D. 2 Switches and push-buttons

D. 4 Indication lamp
D. 5 Socket-outlet
D. 6 Contactors
D. 8 Relays
D. 12 Impulse switches
D. 16 Staircase switches
D. 18 Time relays
D. 20 Digital time switches
D. 22 Light sensitive switches
D. 24 Transformers
D. 26 Analogue measurement instruments
D. 28 Surge arresters
D. 32 Home and building automation system

Residential enclosures

Manual motor starters

Moulded case circuit breakers

Air circuit breakers

Function

Manual control of all kinds of electrical devices.

Approval

Switches and Push-buttons

Applications

Switching of lighting and heating in homes, shops, offices, warehouses, factories, hospitals, etc.

Features

Wide range with respect to available contact combinations and switching capacity. Mains disconnect switches and switches with change-over contact and off position available.
Compact (4-pole in 1 module) with high switching capacity due to double interruption per path.
All switches are sealable through padlock or by means of a lock. The terminals are equipped with captive Pozidriv screws and have IP20 protection degree.
Mains disconnect switches accepts auxiliary contacts H .
Standards

Switches 16/32A	BS EN 60669-1
	VDE 0632 Part 1
Mains disconnect switches 40-100	BS EN 60947-3
	VDE 0632 Part 101

Performance

	Mains disconnect	Switches		Push-buttons
Nominal rated current	40-63-100A	16A	$32 A$	$16 A$
Usable as mains disconnect switch	yes	no		no
Impulse withstand voltage	8kV	-		-
Utilization category	AC-22A	-		-
Nominal voltage single pole devices	240/415V	240 V		240 V
Nominal voltage multipole devices	240/415V	415 V		-
Maximum allowed current during less than 1 s .	2 kA	-		-
Mechanical service life (complete on-off-cycle)	>10000	>20000		>20000
Electrical service life, $\cos \varphi=0.95$, Un and In	>1500	>20000	>5000	>20000
Short-circuit resistance with upfront fuses	16kA (nominal)	4.5 kA (nominal)		4.5kA (nominal)
Protection degree	IP20	IP20		IP20
Screws	Pozidriv 2	Pozidriv 1		Pozidriv 1
Terminal capacity: min	$1 \times 6 \mathrm{~mm}^{2}$	$1 \times 1.5 \mathrm{~mm}^{2}$		$1 \times 1.5 \mathrm{~mm}^{2}$
max	$1 \times 50 \mathrm{~mm}^{2}$	$1 \times 10 \mathrm{~mm}^{2}$		$1 \times 10 \mathrm{~mm}^{2}$

Switches and Push-buttons

Indication lamp

Function

Status visualisation.

Applications

Mainly used to visualise the status of a (sub)part of the installation, heater, motor, fan, pump etc.

Features

Available in different voltages and with different coloured lenses.

Performance

Nominal voltage	12V	24V	230 V
Own consumption	120 mA	85 mA	2.2 mA
Lamp	Incandescent lamp	Incandescent lamp	Neon lamp
Lens colours	Red, green, orange and transparent	Red, green, orange and transparent	Red, green, orange and transparent
Protection degree	IP20	IP20	IP20
Screws	Pozidriv 1	Pozidriv 1	Pozidriv 1
Terminal capacity: min	$1 \times 1.5 \mathrm{~mm}^{2}$	$1 \times 1.5 \mathrm{~mm}^{2}$	$1 \times 1.5 \mathrm{~mm}^{2}$
max	$1 \times 10 \mathrm{~mm}^{2} / 2 \times 4 \mathrm{~mm}^{2}$	$1 \times 10 \mathrm{~mm}^{2} / 2 \times 4 \mathrm{~mm}^{2}$	$1 \times 10 \mathrm{~mm}^{2} / 2 \times 4 \mathrm{~mm}^{2}$

Indication lamp Order codes

		Nominal operating voltage	Colour	Number of modules	Cat. No.	Ref. No.	Pack.
	Lampholder Lamp	- -	-	1	VL1	666881	12
		12 V	-	-	AST B12	666340	12
		24 V	-	-	AST B24	666342	12
		230 V	-	-	AST B230	666341	12
	Lamp LED E10	$235 \mathrm{~V} \sim 1=$	Green	-	AST LG 230V	666876	10
		$235 \mathrm{~V} \sim /=$	Amber	-	AST LA 230V	666874	10
	$\stackrel{1}{\mid}_{\left.\right\|_{2} ^{\prime}}^{\prime}$	$235 \mathrm{~V} \sim 1=$	Red	-	AST LR 230 V	666877	10
		$235 \mathrm{~V} \sim 1=$	Blue	-	AST LB 230 V	666875	10
		$235 \mathrm{~V} \sim 1=$	White	-	AST LW 230V	666878	10
	Lens	-	Transparent	-	AST LCL	666343	12
		-	Green	-	ASTLGN	666344	12
		-	Orange	-	AST L OR	666345	12
		-	Red	-	AST L RD	666346	12

Dimensions

Socket-outlet

Standards

BS EN C61112-1, NF C61-303 (86), IEC 60884-1

Approval

Performance

Nominal current	16 A		
Nominal voltage	250 V		
Operating temperature	$-20 \ldots+55^{\circ} \mathrm{C}$		
Protection degree	IP 20		
Screws	Pozidriv 2		
Terminal capacity: \min	$1 \times 1 \mathrm{~mm}^{2}$		
			$1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$

Socket-outlet Order codes

Dimensions

Function

Contactors are electromechanically controlled switches used to control single or multi-phase (high) power loads while the control itself can be (very) low power.

Contactors

Applications

血風

Switching of lighting, heating-equipment, motors for pumps and fans, ... Day and night contactors are used mainly in combination with dual-tariff applications to allow high-energy-loads (i.e. electrical water heaters, accumulation heaters) only to consume energy during the low-tariff period. A forced-on, forced-off, auto-switch allows to overrule the normal operation of the DN-contactor at all times.

Features

Except for the 20A version, all contactors have DC coils, resulting in an absolutely noise-free, real silent operation: 50 or 60 Hz noise generation by the contactor is impossible. As all DC coil contactors have an internal diode rectifier bridge, they all can be operated by both DC and AC power supplies. The built-in varistor protects the coil against an overvoltage of up to 5 kV . The switch position of the contactor is visualised through an indicator flag. The loss-proof safety terminals are equipped with Pozidriv screws and have IP20 protection degree. Add-on auxiliary contacts as well as spacers and sealing pieces are available.

Standards

IEC 60947-4-1, BS EN 60947-4-1, IEC 61095, BS EN 61095. Approval VDE

Performance

Rated switching capacity	20A	24A	40A	63A
Rated insulation voltage	400 V	500 V	500 V	500V
Rated operational voltage	250 V	440 V	440 V	440 V
Switching-on capacity				
$\cos \varphi=0.95$ at 220-230V 1phase	100A	-	-	-
Switching-off capacity				
$\cos \varphi=0.95$ at 220-230V 1phase	80A	-	-	-
Fuse type GL for short-circuit protection	20A	35A	63A	80A
Ohmic loss per contact at In	1.0W	1.5 W	3.0W	6.0W
Maximum switching frequency AC1 / AC7a	300/h	300/h	300/h	300/h
Maximum switching frequency AC3 / AC7b	600/h	600/h	600/h	600/h
Mechanical service life	10^{6}	10^{6}	10^{6}	10^{6}
Electrical service life AC1 / AC7a	150000	150000	150000	150000
Electrical service life AC3 / AC7b	150000	500000	170000	240000
Screws	Pozidriv 1	Pozidriv 1	Pozidriv 2	Pozidriv 2
Terminal capacity: min	$1 \times 1 \mathrm{~mm}^{2}$	$1 \times 1 \mathrm{~mm}^{2}$	$1 \times 1.5 \mathrm{~mm}^{2}$	$1 \times 1.5 \mathrm{~mm}^{2}$
max	$1 \times 10 \mathrm{~mm}^{2}$ or $2 \times 4 \mathrm{~mm}^{2}$	$1 \times 10 \mathrm{~mm}^{2}$ or $2 \times 4 \mathrm{~mm}^{2}$	$1 \times 25 \mathrm{~mm}^{2}$ or $2 \times 10 \mathrm{~mm}^{2}$	$1 \times 25 \mathrm{~mm}^{2}$ or $2 \times 10 \mathrm{~mm}^{2}$
Magnetic control system				
Control voltage range	85 ... 110\%xUn	85 ... 110\%xUn	85 ... 110\%xUn	85 ... 110\%xUn
Rated operating frequency	50 or 60 Hz	DC, $40 \ldots 450 \mathrm{~Hz}$	DC, $40 \ldots 450 \mathrm{~Hz}$	DC, $40 \ldots 450 \mathrm{~Hz}$
Operating temperature range	$-25 \ldots+55^{\circ} \mathrm{C}^{(1)}$	$-25 \ldots+55^{\circ} \mathrm{C}^{(1)}$	$-25 \ldots+55^{\circ} \mathrm{C}^{(1)}$	$-25 \ldots+55^{\circ} \mathrm{C}^{(1)}$
Maximum pull-in coil power loss	8.0VA / 5.0W	4VA / 4W	5VA / 5W	65VA / 65W
Maximum holding coil power loss	3.2VA / 1.2W	4VA / 4W	5VA / 5W	4.2VA / 4.2W
Switching-on delay	$9 \ldots 12 \mathrm{~ms}$	$<40 \mathrm{~ms}$	$<40 \mathrm{~ms}$	$<40 \mathrm{~ms}$
Switching-off delay	$10 . . .12 \mathrm{~ms}$	$<40 \mathrm{~ms}$	$<40 \mathrm{~ms}$	$<40 \mathrm{~ms}$
Screws	Pozidriv 1	Pozidriv 1	Pozidriv 1	Pozidriv 1
Terminal capacity: min	$1 \times 1 \mathrm{~mm}^{2}$			
max	$1 \times 4 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$	$1 \times 4 \mathrm{~mm}^{2}$ or $2 \mathrm{x} 2.5 \mathrm{~mm}^{2}$	$1 \times 4 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$	$1 \times 4 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$

(1) Remark: If several contactors are mounted next to each-other and the time of operation exceeds 1 hour and the ambient temperature rises above $40^{\circ} \mathrm{C}$, a $1 / 2$-module spacer must be added every second contactor (l.e. contactor contactor spacer contactor contactor spacer contactor contactor etc.)

Contactors

Contactors

Function

Relays are electromechanically controlled switches used to control low power loads.

Marking

C

Relays

Applications

- Switching of lighting, heating, etc
- Galvanic insulation of i.e. status signalisation lamps from a (high) power (high voltage) circuit.
- Galvanic insulation of PLC-inputs or outputs to avoid destruction through excessive voltage.

Features

- The switch position is visualised by the position of the front handle.
- The safety terminals are equipped with captive Pozidriv screws and have IP20 protection degree.
- Add-on auxiliary contacts available.
- Because of the advanced product design, no spacers are needed.
- Increased safety: sealing caps for both coil and terminal are available.

Standard

EN 60947-4-1

Terminal identification

Relays

Dimensions

Relays: Performance

(1) $D C$ supply voltage $=A C$ supply voltage $\times D C / A C$ ratio, except for 8 VAC and 115 V AC (48VDC)
(2) 1 cycle $=2$ operations per pole (closing + opening)

Impulse switches and relays: maximum lamp loads

Lamps type	Lamp Watts Power consumption	Relays VFR+	Impulse switches VFS+
Incandescent lamps			
Max. load 230V AC		1800W	3000W
Max. number of lamps	15W	120	200
	25W	72	120
	40W	45	75
	60W	30	50
	75W	24	40
	100W	18	30
	150W	12	20
	200W	9	15
	300W	6	9
	500W	3	5
Fluor lamp PF uncorrected			
Max. load 230V AC		900W	1800W
Max. number of lamps	18W	50	81
	36W	25	44
	40W	23	38
	58W	16	29
	65W	13	26
Fluor twin lamps			
Max. load 230V AC		1800W	3000 W
Max. number of lamps	$2 \times 18 \mathrm{~W}$	50	78
	$2 \times 36 \mathrm{~W}$	25	38
	$2 \times 40 \mathrm{~W}$	23	35
	$2 \times 58 \mathrm{~W}$	16	23
	$2 \times 65 \mathrm{~W}$	13	22
Fluor lamp parallel compensation			
Max. load 230V AC		500W	2500W
Max. number of lamps	18W	17	103
	36W	13	55
	40W	12	50
	58W	8	34
	65W	7	30
Halogen 230V			
Max. load 230VAC		1800W	3000W
Max. number of lamps	150W	12	20
	250W	7	12
	300W	6	10
	400W	4	7
	500W	3	6
	1000W	2	3
HP sodium vapour			
Max. load 230VAC		800W	1200W
Max. number of lamps	70W	10	15
	150W	5	8
	250W	3	4
	400W	2	3
	1000W	-	1
LP sodium vapour			
Max. load 230V AC		400W	1400W
Max. number of lamps	55W	6	27
	90W	4	16
	135W	3	11
	180W	2	8
	185W	2	8
HP mercury vapour			
Max. load 230V AC		800W	1200W
Max. number of lamps	50W	16	19
	80W	10	15
	125W	7	9
	250W	3	4
	400W	2	3
	1000W	-	1
VLV halogen			
Max. load 230VAC		1500W	2300W
Max. number of lamps	20W	72	116
	50W	29	46
	75W	20	31
	100W	15	24
	150W	10	15
	200W	7	12
	300W	5	7
Electronic reactor			
Max. load 230VAC		1000W	1600W
Max. number of lamps	$1 \times 18 \mathrm{~W}$	38	83
	$1 \times 36 \mathrm{~W}$	30	46
	$1 \times 58 \mathrm{~W}$	17	31
	$2 \times 18 \mathrm{~W}$	19	40
	$2 \times 36 \mathrm{~W}$	15	23
	$2 \times 58 \mathrm{~W}$	8	14

Standards

IEC 60669-1, IEC 60669-2-2

Marking

Impulse switches

Function

Impulse switches are electromechanically controlled switches used to control single- or multi-phase medium-power loads while the control itself can be (very) low power. The device switches between 2 stable positions, each time a (brief) impulse energises its control circuit.

Applications

Mainly used for the switching of lighting and heating equipment and/ or to obtain a simplified wiring in case the load needs to be controlled at reduced voltage and/or from more than 2 different places.

Features

- Besides the normal operation through electrically energising the coil, manual operation is possible at all times, except series VSF+2016.
- The switch position is visualised by the position of the front handle for all devices, except series VSF+2016.
- The central command version was developed to force several devices at the same time to the on or off position,
independently of the current status of each individual device. Also in this case, the possibility of operating the device locally remains.
- The safety terminals are equipped with captive Pozidriv screws and have IP20 protection degree.
- An add-on auxiliary contact, and a spacer are available.
- The use of a large number of luminous push-buttons is possible.

For the table Impulse switches maximum lamp loads, see page D. 11

Impulse switches

Impulse switches: Performance

Rated current (acc. to IEC 669-2-3)		$\begin{aligned} & \text { VFS+10... } \\ & \text { VFS+11... } \\ & \text { VFS+20... } \end{aligned}$	VFS+S20...	$\begin{aligned} & \text { VFS+Z10... } \\ & \text { VFS }+Z 20 \ldots \end{aligned}$
250VAC (1 \& 2 pole) / 400V AC (3 \& 4 pole)	A	16	16	16
Direct Current (at 30VDC)	A	16	16	16
Number of poles		$1 \rightarrow 4$	2	$1 \rightarrow 3$
Contacts NO		$1 \rightarrow 4$	2	$1 \rightarrow 3$
Changeover ("m")		$1 \rightarrow 4$	-	$1 \rightarrow 3$
$\mathrm{NO}+\mathrm{NC}$		$1+1 / 2+2$	-	-
Width (in 17.8 mm DIN modules)				
1 P	Mod.	1	-	1
2 P	Mod.	1	1	11/2
3 P	Mod.	2	-	2
4 P	Mod.	2	-	-
Coil specifications				
Supply voltage: DC/AC ratio ${ }^{(1)}$		$0.5 / 1$	0.5 / 1	$0.5 / 1$
Supply voltage range (in \% of Un)	\%	90-110	90-110	90-110
Coil pick-up power (AC) 1P \& 2P	VA	14.5	14.5	14.5
3P \& 4P	VA	14.5	-	16.0
Coil power loss - AC 1P \& 2P	VA	11.0	11.0	11.0
3P \& 4P	VA	11.0	-	11.0
Coil power loss - DC 1P \& 2P	W	7.5	7.5	12.5
3P \& 4P	W	7.5	-	14.5
Maximum coil holding voltage time		(2)	(2)	(2)
Impulse times				
Minimum impulse time (under Un)	sec.	0.050	0.050	0.100
Minimum impulse time (90\% Un)	sec.	0.100	0.100	0.100
Minimum time between impulses	sec.	0.150	0.150	0.150
Maximum number of impulses per mn		250	250	250
Lifetime (in number of operations) ${ }^{(3)}$				
Electrical (in AC-1 - At full load) ${ }^{(4)}$		4×10^{5}	3×10^{5}	4×10^{5}
Mechanical		2×10^{6}	2×10^{6}	2×10^{6}
Load specifications				
Maximum load AC-1 per phase	A	20	20	20
Maximum load DC (30V DC)	A	16	16	16
Minimum load per phase (under 5V)	W	2	2	2
Short-circuit fuse protection	A	20	20	20
Maximum lamp load (10^{3} operations/h)				
Incandescence \& halogen (40 to 200 W lamps)	W	3,000	3,000	3,000
Fluorescence, compensated ($\cos \varphi=0.9)$				
Serial compensation	VA	3,000	3,000	3,000
Parallel compensation	VA	2,500	2,500	2,500
Fluorescence, non compensated ($\cos \varphi=0.5)$	VA	1,800	1,800	1,800
Maximum number of push-buttons				
Non illuminated push-buttons		unlimited	unlimited	unlimited
Luminous push-buttons (0.6mA)				
4 terminals		unlimited	unlimited	unlimited
3 terminals Without compensator		8	8	8
1 compensator		18	18	27
2 compensators		45	45	43
General specifications				
Power contact add-on		yes	no	no
Auxiliary contact add-on (PLS / CTX R)		yes	no	yes
Need for spacer ${ }^{(2)}$		yes	yes	yes
DIN rail mounting		yes	yes	yes
2-position DIN rail lock		yes	yes	yes
2-position handle		yes	no	yes
Indicator of contact position		yes	yes	yes
Clamping terminals		yes	yes	yes
Unlosable screws		yes	yes	yes
Sealable terminals (coil and load)		yes	yes	yes
Cable cross section (\varnothing min/max) Coil	mm^{2}	$1.5 / 10$	$1.5 / 10$	$1.5 / 10$
Load 1P-3P \& 4P	mm^{2}	$1.5 / 10$	$1.5 / 10$	$1.5 / 10$
Load 2P	mm^{2}	$1.5 / 10$	$1.5 / 10$	1.5 / 6
Maximum torque on terminals	Nm	1	1	1
Ambient temperature at installation point (min./max.)	${ }^{\circ} \mathrm{C}$	$-20 /+45$	$-20 /+45$	$-20 /+45$

(1) For all impulse relays, $D C$ supply voltage $=A C$ supply voltage $\times D C / A C$ ratio, except for $8 V A C$
(2) Whenever the normal use of the impulse relay integrates a permanent coil working, use of a spacer is required on both sides.

Make sure that the duty factor allows the device to come back to the ambient temperature
(3) 1 cycle $=2$ operations per pole (closing + opening)

Terminal capacity - Impulse switches

Step by step multi circuit

All-in central command

Add-on power contact

Add-on auxiliary contact

14
22
14222
13
21
13
1 NO 1 NC

Impulse switches

AII-in central command Add-on auxiliary contact

Step by step multi circuit

Standard / Marking

EN 60669-2-3 (C

Performance

Staircase switches

Applications

Lighting or ventilation of staircases, basements, halls, etc.

Features

- Designed for a real 3.500 W switching capacity.
- User adjustable time.
- Electromechanical contact and electronic timer with manual override off or on possible at all time for VTR4.
- 3 or 4 wire wiring possible.
- Device for pre-extinction warning adjustable from 20 to 40 sec only for incandescence sources.
- Safety terminals equipped with captive Pozidriv screws and IP20 protection degree.
- Anti vandalisme: resistant to blocked push-buttons.

Function

Push-button operated single-shot timer, switching the power to the load after the push-button has been pushed briefly, and switching off again after the presetted time has elapsed.
Energy saving: the VTR5 is especially developed to switch off during the preset time when the staircase switch receives a new impulse.

		VTR5	VTR4	VTRHL
Rated current (acc. IEC 669-2-3)	A	16	16	16
Width (in number of DIN-modules)		1	1	1
Contacts NO		1	1	1
Time range 1 function		$1 \mathrm{mn} / 20 \mathrm{mn}$	30s / 15mn	20s / 40s
Supply voltage $230 \mathrm{~V}-50 / 60 \mathrm{~Hz}$		yes	yes	yes
24VAC / 24VDC		on request	on request	on request
Supply voltage range (in \% of Un)	\%	90-110	90-110	90-110
Rated power consumption				
Closed circuit current 230V	VA	4.0	4.0	4.0
Working current (ignition \& running) 230V	VA	4.0	4.0	4.0
Light types				
Incandescent lamps		yes	yes	yes
Fluorescent lamps		yes	yes	no
Switching capacity				
AC-5b Incandescent lamps (40 to 200 W lamps)	W	3,500	3,500	3,500
Fluorescence compensated ($\cos \varphi=0.9)$				
Serial compensation	W	3,500	3,500	n/a
Parallel compensation	VA	2,500	2,500	n/a
Lifetime (in number of operations) ${ }^{(1)}$				
Electrical (AC-1) at 1,200W		2×10^{6}	2×10^{6}	2×10^{6}
at full load		1×10^{6}	3×10^{5}	3×10^{5}
Mechanical		1×10^{7}	1×10^{7}	1×10^{7}
Max. number of push-buttons				
Non illuminated push-buttons		unlimited	unlimited	unlimited
Luminous push-buttons (0.6mA):				
4 terminals		unlimited	unlimited	unlimited
3 terminals Without compensator		39	83	83
1 compensator ($2 \mu \mathrm{~F}$)		45	300	300
2 compensators ($2 \times 2 \mu \mathrm{~F}$)		59	600	600
General specifications				
DIN rail mounting		yes	yes	yes
Silent operations		yes	yes	yes
Setting accuracy - Full range	\%	+/-15	+/-15	+/-15
3-wire and 4-wire installation		yes	yes	yes
Resistent to blocked push-buttons		yes	yes	yes
Continuously adjustable time-lag		yes	yes	yes
Manual switching (number of positions)		2	3	-
Front switch-off lever		yes	yes	-
Clamping screw terminals, unlosable screws		yes	yes	yes
Cable cross section (\varnothing min/max) Coil	mm²	$1.5 / 10$	$1.5 / 10$	$1.5 / 10$
Load	mm^{2}	$1.5 / 10$	1.5/10	$1.5 / 10$
Maximum torque on terminals	$\mathrm{N} \times \mathrm{m}$	1	1	1
Ambient temperature at installation point (min./max.)	${ }^{\circ} \mathrm{C}$	$-20 /+45$	$-20 /+45$	$-20 /+45$

[^0]
Staircase switches

$\bullet *$	Staircase switch	Nominal current	Contact combination	Coil voltage AC	Coil voltage DC	Number of modules	Cat. No.	Ref. No.	Pack.
		16	1NO	230	-	1	VTR 4	686031	12
		\qquad							
	Dimmer for staircase switch	16	3500W	230	-	1	VTRHL	686033	12
**		To be used only in combination with the staircase switch.							
**	Time-delay impulse relay	16	1NO	230	-	1	VTR 5	686252	12
		S 1 S 2 L							

Terminal identification

Staircase switch Time-delay impulse relay

Dimmer for staircase switch

A1	A2
1	

Dimensional drawings

Function

Conditioning of incoming source to exact predictable output.

Standard / Marking

IEC 60669-2-3 CE

Time relays

Applications

From the delayed lighting of driveways (to avoid unneccessary on/off switching), to after-circulation of a pump (to build in some hysteresis, again to avoid continuous on/off switching) to the post-present ventilation of a meeting room.

Features

- Devices with delay on (ON), delay off (OFF) and positive edge single shot (PS).
- User presettable prescaler and time.
- The loss-proof safety terminals are equipped with Pozidriv screws and have IP20 protection degree.

Performance

		PLT +	
Rated current (acc. IEC 669-2-3)		A	16
Width (number of DIN-modules)			1
Contacts	Changeover		1
	Static input		-
Time range	1 function		1s/60mn
	Multifunction		0.1s. / 20h.
Supply voltage	230/240V - 50/60Hz		yes
	24VAC / 24VDC		yes
Supply voltage range (in \% of Un)		\%	90-110
Rated power consumption			
Closed circuit current	230V	VA	1.5
	24V	VA	0.2
Working current(ignition \& running)	230 V	VA	4.0
	24V	VA	2.0
Light types			
Incandescent lamps			yes
Fluorescent lamps			yes
Switching capacity			
AC-5b Incandescent lamps (40 to 200 W lamps)		W	2300
Fluorescence compensated ($\cos \varphi=0.9)$			
	Serial compensation	W	2300
	Parallel compensation	VA	1000
Inductive load $\cos \varphi=0.5$	-		10A
	Load AC-7b	W	900
Lifetime (in number of operations) ${ }^{(1)}$			
Electrical (AC-1)	at 1,200W		2×10^{6}
	at full load		3×10^{5}
Mechanical			1×10^{7}
General specifications			
DIN rail mounting			yes
Silent operations			yes
Setting accuracy - Full range		\%	+/-15
Continuously adjustable time-lag			yes
Front switch-off lever			no
Clamping screw terminals, unlosable screws			yes
Cable cross section (\varnothing min/max)	Coil	mm^{2}	$1.5 / 10$
	Load	mm^{2}	$1.5 / 10$
Maximum torque on terminals		Nx m	1
Ambient temperature at installation point (min./max.)		${ }^{\circ} \mathrm{C}$	$-20 /+45$

[^1]
Time relays

	11
12	
${ }^{2}$	
$1 /$	
,	
1	
S2	
	N

Digital time switches

Applications

Going from the pre-programmed switching of lighting (car park, advertising signs, public roads, etc.) over pre-programmed switching of heating equipment (home and work environment, water heating, etc.) to the pre-programmed switching of motors for pumps and fans and even to random presence simulation.

Features

Very easy programming, with quasi unlimited possibilities compared to the analogue time switches. Devices with daily/weekly event programming possibilities are available in 1 channel execution. All devices have a shortest switching time of one minute and are all internally quartz-synchronized. On the devices, the summer/winter time change is fully automatic. Devices with free weekday blockprogramming, holiday function are available. Manual ON or OFF override is possible at all times and all devices are sealable.

Standards

BS EN-60730-1, BS EN-60730-2-7, VDE 0633

Performance

Contacts	GD - 7-70/1
Contact	Voltage-free changeover
Rated switching capacity	
- Resistive load	16A/250V
- Inductive load ($\cos \varphi=0.6$)	10A/250V
- Incandescent lamps	2600W
Fluorescent uncorrected / serial corrected	1000VA
- Halogen lamp load	2600W
- Compact fluorescent lamp	$22 \times 7 \mathrm{~W}, 18 \times 11 \mathrm{~W}, 16 \times 15 \mathrm{~W}, 16 \times 20 \mathrm{~W}, 14 \times 23 \mathrm{~W}$
- Energy saving lamps	$37 \times 7 \mathrm{~W}, 30 \times 11 \mathrm{~W}, 26 \times 15 \mathrm{~W}, 26 \times 20 \mathrm{~W}, 11 \times 23 \mathrm{~W}$
Minimum switching load	3000 mW
DC switching capacity	$800 \mathrm{~mA} / 300 \mathrm{~mA} / 150 \mathrm{~mA}$
Shortest switching time	1 min .
Screws	Pozidriv 1
Terminal capacity	$1 \times 4 \mathrm{~mm}^{2}$
Clockwork	
Operating voltage	110V-230VAC
Own consumption at 230 V	1VA
Running reserve (at $20^{\circ} \mathrm{C}$)	3 years at $20^{\circ} \mathrm{C}$
Battery type	CR2032
Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Accuracy	$\pm 0.5 \mathrm{~s} . /$ day at $20^{\circ} \mathrm{C}$
Sealable and unloosable cover	yes

Digital time switches

Day/Week programmable	Program	No. of channels	Switching capacity	Operating voltage	Running reserve	Shortest switching time	No.of prog. steps	No. of mod.	Cat. No.	Ref. No.	Pack.
	$7 \times 24 h$	1 CO	16A/250V	110...230V	3 years	1 min .	70	2	GD-7-70/1 AEG	666350	1
	- Display lighting - PIN-code - Hour counter with service function - 12/24h time setting - Weekly and holiday program (ON/OFF) - Free weekdays block formation - Summer/winter time changeover: auto/free selectable/OFF - Manual switch: auto/override/fix ON-OFF - Non-volatile memory (EEPROM) - Easy battery replacement (from top side)										

Dimensional drawings

Standards

VDE 0632, VDE 0633,
BS EN 60669-1

Light sensitive switches

Applications

Control of lighting in shop windows, offices, car parking areas, controlling street lights, advertising signs, sun blinds, shutters, or even lighting in a home to simulate the presence of people.

Features

User presettable switch light intensity, intensity range and hysteresis (to avoid on/off a stable behavior). 1 channel with separate photocell is available besides a 1 channel all-in-one device.

Function

Electronic switch controlled by the intensity of the ambient light, detected by a separate or integrated photocell (depending on the model). When the light intensity drops below the threshold setting, the switch changes its state to the on position. An increasing ambient light intensity eventually will switch off the device again.

Performance

	1 channel GDS	GDSW
Contacts		
Contact	1 make contact NO	1 make contact NO
Switching capacity		
- Resistive load	16A/250V	10A/250V
- Inductive load ($\cos \varphi=0.6)$	8A/250V	2A/250V
- Incandescent lamps	2000W	1200W
Switching capacity	800 mA at $24 \mathrm{~V}, 300 \mathrm{~mA}$ at 60 V ; 150 mA at 220 V	Not allowed
Shortest switching time	-	-
Screws	Pozidriv 1	Slot head
Terminal capacity: min	$1 \times 0.5 \mathrm{~mm}^{2}$	$1 \times 0.5 \mathrm{~mm}^{2}$
max	$1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$	$1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$
Light sensitive operating part		
Light intensity switching range	2 ... 500 lux	2 ... 2000 lux
Switching hysteresis		
On/Off switching delay	$\begin{aligned} & 100 \mathrm{~s} . \text { On } \\ & 100 \mathrm{~s} . \text { Off } \end{aligned}$	$20 . .120 \mathrm{sec}$.
Light sensitive sensor wire-length	max 100m	-
Light sensitive sensor protection degree	IP65 (sensor)	IP54 (complete device)
Operating voltage	220/240V 50/60Hz	220/240V 50/60Hz
Own consumption at 230V	5VA	6VA
Running reserve	-	-
Battery	-	-
Operating temperature range	$\begin{aligned} & -20 \ldots+55^{\circ} \mathrm{C} \text { (switch) } \\ & -30 \ldots+70^{\circ} \mathrm{C} \text { (sensor) } \end{aligned}$	$-35 \ldots+60^{\circ} \mathrm{C}$
Sealable	yes	-
Screws	Pozidriv 1	Slot head
Terminal capacity: min	$1 \times 0.5 \mathrm{~mm}^{2}$	$1 \times 0.5 \mathrm{~mm}^{2}$
max	$1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$	$1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$

Light sensitive switches

Dimensions

Light sensitive switches

Photocell

Light sensitive switches wall mounted

Standards

IEC 61558-1-2-6: Safety transformer IEC 61558-1-2-8: Bell transformer

Transformers

Applications

Going from supplying power to a bell circuit, to supplying power to the control circuit of impulse switches, relays or contactors for the control of lighting, heating, etc.

Features

Safety transformers have short-circuit protection and continuous nominal power. Bell transformers are recommended for intermittent use at the nominal power declared (50% for continuous use). Full power available at all secondary voltages. The safety terminals are equipped with captive Pozidriv screws and have IP20 protection degree.

Function

Reducing the voltage to a very low (safety) voltage used mainly as control-voltage in order to reduce the risk of electrocution due to environmental circumstances (l.e. high degree of humidity like outdoors, in a swimming pool complex, etc.).

Performance

	Bell transformer	Safety transformer
Nominal primary voltage and frequency	$230 \mathrm{~V} 50 \mathrm{~Hz} / 240 \mathrm{~V} 60 \mathrm{~Hz}$	$230 \mathrm{~V} 50 \mathrm{~Hz} / 240 \mathrm{~V} 60 \mathrm{~Hz}$
Secondary voltage at nominal primary voltage	8 or 12V	12 or 24 V
Maximum secondary voltage at zero load	1.5 XUn sec .	$1.05 x$ Un sec.
Minimum secondary voltage at nominal load	$0.85 x$ Un sec.	$1 \mathrm{xUn} \mathrm{sec}$.
Maximum load	Nominal power	Nominal power
Short-circuit protection	PTC ${ }^{(1)}$	PTC
Operating temperature	$-20 \ldots+40^{\circ} \mathrm{C}$	$-20 . .+40^{\circ} \mathrm{C}$
Isolation voltage	4kV	4kV
Protection degree	IP 20	IP 20
Screw	Pozidriv 1	Pozidriv 1
Terminal capacity: min	$1 \times 1 \mathrm{~mm}^{2}$	$1 \times 1 \mathrm{~mm}^{2}$
max	$1 \times 16 \mathrm{~mm}^{2}$ or $2 \times 6 \mathrm{~mm}^{2}$	$1 \times 16 \mathrm{~mm}^{2}$ or $2 \times 6 \mathrm{~mm}^{2}$

[^2]Transformers

Bell transformers

Safety transformers

Function

Measurement, visualisation and logging of voltage, current, frequency, hours of operation.

Standards

EN 61010-1, BS EN 60051-1-2

Measurement instruments

Applications

Measurement of basic electrical values as voltage, current, frequency. To avoid down-time due to abnormal situations, i.e. power-supply voltage too high, absorbed power too high, etc., leading to malfunctionning and even break-down of the machinery, the measurement and monitoring of the electrical values like voltage, current, frequency, etc. is an absolute must and even an indespensable asset when it comes to preventive maintenance.

Features

- AC measurement devices with analogue technology and readout are available.
- The devices (one measurement only i.e. voltage, current, frequency) are only available in single phase.
- High currents can be measured through the intermediate use of a current transformer (for the analogue amp-meter combined with an interchangeable scale-plate).
- All devices have very good precision and have also a very low self-consumption to limit as much as possible the measurement error.
- Using one monophase-volt or amp-meter in a 3-phase system is possible by using the appropriate selector switch.

Performance

Analogue measurement instruments

Standards

Protection of an electrical installation and all electrical and electronic devices connected to this installation against destructive surges. Such voltage surges can be generated by lighting induced currents, by network polluting devices such a motors, frequency converters, dimmers, etc.., and by power supply networks switching operations.

Standards

NF C61-740
IEC 61643-I
IEC 61643-II
BS 6651
DIN VDE 0675-6

Marking

C

Surge arresters

ASA BLOCK
ASA PLUG-IN
ASA PHOT
ASA TELE OV

Applications

ASA BLOCK, ASA PLUGIN and ASA PHOT surge arresters cover the protection of home appliances (TV, Hifi, VCR, laundry-machine, dishwasher...), commercial building equipment (computer, data networks, intrusion and alarm systems, access control and building automation systems), industrial equiment (PLC, instrumentation, medical apparatus, monitoring devices) and even the protection of entire off-shore drilling platforms.

Features

- AEG family of surge arresters includes a full range of compact protectors for installation on DIN rail.
- The range is specially designed to provide complete and effective protection against surges, protecting equipment and property connected to the low-voltage network.
- The range includes Class I/B 35 kA to 10 kA surge arresters in $10 / 350 \mathrm{~ms}$ wave form, and Class II/C surge arresters with different discharge capacities: 40 kA and 100 kA in wave form $8 / 20 \mathrm{~ms}$.
Class 2 SPD's for DC photovoltaic applications are also available.
- The most suitable value will be selected according to the type of installation, premises and equipments to be protected.
- Several different formats one-pole, single-phase, two-phase and three-phase available for all types of electrical net systems: TT, TN-S, TN-C, IT.
- Additionally, a complete line for temporary overvoltage (TOV) is included in this range. TOV is a voltage peak of hundreds of volts for an indeterminate period due to the unbalance of the network (normally caused by neutral fault).

Applications

Impulse current (limp)

This is the peak current that the SPD can withstand without failing. The waveform of the applied current is normalised as $10 / 350 \mu \mathrm{~s}$.
Used in Class 1 SPD.

Maximum discharge current (Imax)

This is the peak current it can withstand in a single pulse without failing. The waveform of the applied current is normalised as $8 / 20 \mu \mathrm{~s}$. Used in Class 2 SPD.

Nominal discharge current (In)

This is the current that the device is capable of shunting to ground at least 20 times without failing.

Level of protection (Up)

This is the parameter that characterises the action of the protection device against surges by limiting the voltage between its terminals. It must be less than the surge withstand capacity given by the category of the equipment to be protected. However, if the protector is far from the equipment to be protected it may be necessary to use additional protectors.

Maximum continuous operating voltage Umax (Uc)
This is the maximum AC or DC voltage which may be continuously applied to the terminals of the SPD.

Performance

	ASA BLOCK I	ASA BLOCK I\&II	ASA PLUG-IN II single phase	ASA BLOCK II multi-phase
Energy impulse wave	10/350 ${ }^{\text {s }}$	10/350 μ s and $8 / 20 \mu$ s	8/20 ${ }^{\text {s }}$	8/20 ${ }^{\text {s }}$
Response time	<100ns	<100ns	$<25 n s$	$<25 n s$
Thermal fuse	-	yes	yes	yes
Thermal fuse healty indication	-	Indicator flag window	Indicator flag window	Indicator flag window
Nominal voltage	230 V or 400V			
Frequency	$50 / 60 \mathrm{~Hz}$			
Useable in network	TT, TN-S, TT, IT	TT, TN-S, TT, IT	TT, TN-S, TT, IT	TT, TN-S
Operating temperature	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Screws	Pozidriv 3	Pozidriv 3	Pozidriv 3	Pozidriv 3
Terminal capacity: min	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$
max (flexible/rigid)	$35 / 50 \mathrm{~mm}^{2}$	25/35mm ${ }^{2}$	25/50mm ${ }^{2}$	25/35mm ${ }^{2}$

Connection scheme Tele OV

4P ASA TOV protection

SA BLOCK - SA PLUG-IN / Surge arresters

These surge arresters have the capacity to divert excess energy for low-voltage line protection.
Class I/B Class I surge arresters should be installed in areas at high risk from direct lightning strike discharge. Single phase

The ASA BLOCK I\&II can operate as a Class I and Class II protection in accordance with the IEC 61643-11, Class I/B and Class II/C integrated in only one device. Used in main panelboards (incomer of installations) with high risk from direct lightning strike discharge.
Class I/B and II/C
Not needed decoupling coils and class II downstream SA BLOCK I\&II in the main panelboard.

D

The Class II

Special applications

Class II/C protection for (DC) Photovoltaic applications	Imax	In	Up	$\underset{(\mathrm{L}-\mathrm{N})}{\mathrm{Up}_{\mathrm{t}}}$	$\mathrm{Up}_{(\mathrm{N}-\mathrm{EP})}$	Umax (Uc)	No. of poles	Aux. contact	No. of modules	Cat. No.	Ref. No.	Pack.
701	40kA	15kA	2600 V	-	-	600Vdc	2 P	-	2	ASA PHOT 600V	667536	1
	40kA	15kA	3800 V	-	-	1000 Vdc	2 P	-	2	ASA PHOT T 1000 V	667537	1
	Accessories											
Class II - Replacement modules for plug-in versions	Imax	In	Up	$\underset{(\mathrm{L}-\mathrm{N})}{\mathrm{Up}}$	$\underset{(N-E P)}{\text { Up }^{2}}$	Umax (Uc)	No. of poles	Aux. contact	No. of modules	Cat. No.	Ref. No.	Pack.
TT, TN-S, TN-C, IT	40kA	20kA	-	1200V	-	280 V	1 P	-	1	ASA MODULE 40/230	667533	1
	40kA	20kA	-	1300 V	-	440 V	1 P	-	1	ASA MODULE 40/400	667534	1
	60kA	20kA	-	1500V	-	255 V	1 P	-	1	ASA MODULE 60 NGND	667535	1
	To be used between class I/B and class II/C if these arresters are placed in the same panelboard. We can save it if we use ASA BLOCK I\&II.											
	Imax	In	Up	$\underset{(\mathrm{L}-\mathrm{N})}{\mathrm{Up}_{1}}$	$\underset{(N-E P)}{\text { Up }^{2}}$	Umax (Uc)	No. of poles	Aux. contact	No. of modules	Cat. No.	Ref. No.	Pack.
	-	35 A	-	-	-	-	1 P	-	2	ASA C35	667525	1
	ASA TELE OV - Temporally Overvoltage (ATOV)											
Protection against permanent overvoltage	Imax	In	Up	$\underset{(\mathrm{L}-\mathrm{N})}{\mathrm{Up}}$	$\underset{(N-E P)}{\text { Up }^{\prime}}$	Umax (Uc)	No. of poles	Aux. contact	No. of modules	Cat. No.	Ref. No.	Pack.
	-	mcb	254 V	$<4 \mathrm{sec}$.	$<0.5 \mathrm{sec}$.	230 V	2	-	1	ATELE OV 230	667538	1
	-	mcb	254V	$<4 \mathrm{sec}$.	$<0.5 \mathrm{sec}$.	400 V	4	-	2	ATELE OV 400	667539	1

Surge arresters

ASA BLOCK, ASA PHOT x 2 MODULES, ASA C

ASA BLOCK II 15 LN

Plug-in types ASA C

ASA TELE OV - Overvoltage protection

HabiTEO ${ }^{\text {TM }}$ Home and Building Automation

The growing recognition of the fact that buildings consume 40% of total energy used and are responsible for 36% of CO_{2} emissions in the European Union, places ever increasing emphasis on improving energy efficiency in buildings.

Development of innovative technologies offers new possibilities to upgrade electrical installations - the heart of every building. This area holds great potential for designing properties with greater flexibility, energy saving and additional comfort without compromising lifestyle.

HabiTEQ ${ }^{\text {M }}$ hybrid automation system combines wired and wireless control technologies to enable energy efficiency improvements: optimize the regulation of energy used by heating, lighting, ventilation, and building electrical infrastructure and further increases energy awareness through consumption reporting.

- Energy management
 - Flexibility and comfort

- Installation simplified

Shaping the future with HabiTEQ™ wireless

Advancement in wireless technology has transformed communications ranging from indispensible devices like mobile phone and Wifi PC networks to highly reliable aircraft communication and navigation systems impacting everyday life.

Emerging standards and advances in wireless technology have made it possible to deploy wireless solutions in building automation networks.

Wireless sensing gives you economical control and optimum comfort in areas that are frequently re-configured, or where hardwiring is challenging or simply not possible.

The wireless technology is ideal for minimizing the impact on existing building installations and decorative surfaces, or for controlling large, open spaces or structures with brick or concrete walls.

Wireless technology offers unlimited flexibility for new installations.

HabiTEQ TM wireless

[^3]
Dimensions

Mains alisconnect switches

Switches

Switches with signal lamp

[^0]: (1) cycle $=2$ operations per pole (closing + opening)

[^1]: (1) cycle $=2$ operations per pole (closing + opening)

[^2]: (1) Except 666999 - protection by construction

[^3]: For more information, please contact us.

